
J .  Fluid Mech. (1995), vol. 292, p p .  333-358 
Copyright @ 1995 Cambridge University Press 

333 

Stratified circular Couette flow: instability and 
flow regimes 

By B. M. BOUBNOVT, E. B. GLEDZERT 
AND E. J. H O P F I N G E R  

LEGI/IMG, CNRS-UJF-INPG, B.P. 53 X, 38041 Grenoble Cedex, France 

(Received 22 June 1994 and in revised form 30 January 1995) 

The stability conditions of the flow between two concentric cylinders with the inner 
one rotating (circular Couette flow) have been investigated experimentally and theo- 
retically for a fluid with axial, stable linear density stratification. The behaviour of the 
flow, therefore, depends on the Froude number Fr = O / N  (where O is the angular 
velocity of the inner cylinder and N is the buoyancy frequency of the fluid) in addition 
to the Reynolds number and the non-dimensional gap width 6, here equal to 0.275. 

Experiments show that stratification has a stabilizing effect on the flow with the 
critical Reynolds number depending on N ,  in agreement with linear stability theory. 
The selected, most amplified, vertical wavelength at onset of instability is reduced 
by the stratification effect and is for the geometry considered only about half the 
gap width. Furthermore, the observed instability is non-axisymmetric. The resulting 
vortex motion causes some mixing and this leads to layer formation, clearly visible 
on shadowgraph images, with the height of the layer being determined by the vertical 
vortex size. This regime of vertically reduced vortex size is referred to as the S-regime. 

For larger Reynolds and Froude numbers the role of stratification decreases and 
the most amplified vertical wavelength is determined by the gap width, giving rise to 
the usual Taylor vortices (we call this the T-regime). The layers which emerge are 
determined by these vortices. For relatively small Reynolds number when Fr NN 1 the 
Taylor vortices are stable and the layers have a height h equal to the gap width; for 
larger Reynolds number or Fr NN 2 the Taylor vortices interact in pairs (compacted 
Taylor vortices, regime CT)  and layers of twice the gap width are predominant. 
Stratification inhibits the azimuthal wavy vortex flow observed in homogeneous fluid. 
By further increasing the Reynolds number, turbulent motions appear with Taylor 
vortices superimposed like in non-stratified fluid. 

The theoretical analysis is based on a linear stability consideration of the axisym- 
metric problem. This gives bounds of instability in the parameter space (0, N )  for 
given vertical and radial wavenumbers. These bounds are in qualitative agreement 
with experiments. The possibility of oscillatory-type instability (overstability) observed 
experimentally is also discussed. 

1. Introduction 
One of the classical hydrodynamic stability problems of major importance is the 

flow of fluid confined to the annulus between concentric, rotating cylinders. Since 
the pioneering works by Couette (1890) and Taylor (1923) a very large number of 

t Permanent address: Institute of Atmospheric Physics, 109017, Moscow, Russia. 
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experimental and theoretical studies have considered different aspects of instability 
and transitions of this flow configuration (see for instance Di Prima & Swinney 
1981 ; Andereck, Liu & Swinney 1986; Chossat & Iooss 1994).Various modifications 
of this problem have also received considerable attention and these include the 
influence of axial flow (Gravas & Martin 1978; Lueptov, Docter & Min 1992), 
unsteadiness of the rotation rate (Cooper et al. 1985) and the effect of radial 
temperature or density variations with and without an axial gravitational field (Snyder 
& Karlsson 1964; Yao & Rogers 1989; Kubotani et al. 1989; Ali & Weidman 
1990). 

In the simplest case of Couette-Taylor flow, with only the inner cylinder rotating, 
a variety of different regimes are observed: Taylor vortices, wavy vortices, modu- 
lated wavy vortices, turbulent Taylor vortices. When additional effects are included 
(Coriolis force, velocity shear, radial density stratification etc.) significant changes 
in the stability occur and the flow states reveal a rich variety of phenomena (An- 
dereck et al. 1986, for instance found more than fifteen principal flow regimes 
between independently rotating cylinders in homogeneous fluid). Surprisingly, the 
case of the interaction of centrifugal and buoyancy forces, namely circular Couette 
flow with axial density stratification, has not received much attention. The only 
previous theoretical considerations of this configuration are by Thorpe (1966). He 
investigated the analogy of this problem with rotating Bhard convection (mentioned 
by Chandrasekhar 1961, see also Veronis 1970); he concluded that stable stratifi- 
cation delays the occurrence of rolls in the azimuthal direction and reduces their 
height. 

It has been argued by Hua (see Hua & Moore 1994) that centrifugal-type instability 
may be at the origin of equatorial jet formation and this motivated us to study the 
stratified Couette-Taylor problem in more detail. In the equatorial region the potential 
vorticity is negative and rotational instability of the zonal flow is thus possible, leading 
to rolls oriented latitudinally. Such rolls would modify the velocity of the equatorial 
undercurrent in a jet-like fashion (more or less sinusoidal velocity variation with 
depth). Stratification flattens the rolls in the vertical. 

In the present study the simplest case of linear stratification and with only the 
inner cylinder rotating has been considered experimentally and theoretically. The aim 
was to determine the dependence on stratification of the instability and the further 
transitions in flow structure and to know by how much the vertical size of the rolls is 
reduced by stratification. It is shown that density stratification has a strong effect on 
the onset of instability and the resulting vortex structures. The vortices cause mixing 
by overturning and hence the formation of layers of height equal to the vertical vortex 
size. It is noteworthy that the layer height changes in a discrete manner from less 
than the gap width to one and then to twice to gap width. 

The main non-dimensional parameters of the problem are the usual Reynolds 
number Re = SZa(b-a)/v (see e.g. Andereck et al. 1986), and the non-dimensional gap 
width E = b/a-1 ( a  and b are the radii of inner and outer cylinders respectively, SZ the 
angular velocity of the inner cylinder, and v the kinematic viscosity). The stratification 

112 is expressed by the Brunt-Vaisala or buoyancy frequency N = ( - (g/p)ap/dz)  
(where p is the density and g the gravitational acceleration), and this introduces an 
additional non-dimensional parameter which is the Froude number Fr = Q / N .  

In 5 2 are presented the experimental apparatus and procedure. Section 3 contains 
the main experimental results, concerning the instability and other flow regimes; the 
dependency of onset of instability on the main non-dimensional parameters and also 
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the non-axisymmetric structure which arises after onset of instability are discussed. In 
0 4 the results of linear stability theory for the small-gap approximation are compared 
with experiments. Further discussion and conclusions are presented in 95. 

2. Experimental apparatus and procedure 
The experimental installation for circular Couette flow in stratified fluid is similar 

to those which are used for studying Couette-Taylor flow in homogeneous fluid. It 
consists of long coaxial transparent Plexiglas cylinders with the outer cylinder, the 
bottom and surface being at rest and the inner cylinder rotating with constant angular 
velocity R. The outer cylinder has an inner radius of b = 51 mm, and the inner 
cylinder has an outer radius a = 40 mm, giving a non-dimensional gap width E= 0.275. 
This E is sufficiently small for interpreting the results in the context of the small-gap 
approximation theory (see Di Prima & Swinney 1981) and the gap is still sufficiently 
large for observing details of the vortex and layer structure. The length of the cylinder 
is L = 573 mm, or r = L/ (b  - a)  = 52. In most experiments the gap was filled 
completely with linearly stratified salt solution and the upper boundary was rigid; 
only in experiments with large density gradient, when N > 1.5 s-l (the numerical 
values of R and N are throughout the paper in rad s-’), was the upper boundary free, 
because in order to reach this value of N it was necessary to fill the space between 
the cylinders to a depth less than L. In our experiments stable density stratification 
inhibits propagation of disturbances from the top and bottom boundaries to the fluid 
interior and there is no influence of boundary conditions on the flow regimes (which 
would not be the case in non-stratified fluid, where end boundary conditions are very 
important in the onset of instability when r is not large). 

The linear stratification was accomplished by using a salt solution and the standard 
‘double-bucket’ filling method (Oster 1965). The time of filling was of the order of two 
hours. Normally, stratification measurements were made by taking samples at four 
different depths or more. The linearity of the density profile was also verified with 
the help of shadowgraphs, in which the outer surface of the inner cylinder appears 
as a straight line inclined at some angle to the vertical, with the inclination being 
proportional to the Brunt-Vaisala freguency N .  The deviations of the density profiles 
from linearity in the main part of the fluid column (0.1 < z / L  < 0.9, where z is 
the vertical coordinate) were less then 5% (determined from variations between the 
samples taken). The value of N was changed in the limits 0.35 < N < 1.78 s-l. The 
change in kinematic viscosity due to the change in salinity is 10% when N change from 
0.4 to 1.7 and this change was accounted for when calculating Reynolds numbers. 

In order to reduce optical distortsions due to the curvature of the cylinders, the 
apparatus was placed in a large square box filled with water (there is also water in 
the inner cylinder). This also helped to keep the temperature uniform. For the flow 
visualizations two different and complementary techniques were used : a shadowgraph 
technique, sensitive to the second derivative of density which allows the horizontally 
averaged density structures to be seen, and particle streak line methods to visualize 
the vortex motion. Aluminium powder and kalliroscope particles were used in this 
case. The aluminium particles are almost isotropic and move with the fluid and 
show the motions in the vortices, while plane kalliroscope flakes outline primarily the 
vortex structure of the flow. 

The inner cylinder was rotated with an angular velocity R maintained constant 
within 1% and its value could be changed continuously from 0.1 to 3.7 s-l. Steady 
rotation of the inner cylinder was reached in less than 2 s after switch-on and stable, 
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steady-state azimuthal fluid motion was established, on average, in a time of about 10 
min. The time for observable (on shadowgraph) instability of the zonal, axisymmetric 
flow depends how close the rotation rate is to critical conditions. 

Two experimental procedures have been used: one starts with the fluid at rest and 
suddenly setting the angular velocity 52 to the desired supercritical value and the 
other increases 52 from one value to another. The later incremental procedure (small 
increments) is necessary for the determination of the neutral stability curve. The 
other flow states were obtained with the former method of setting 52 to the desired 
supercritical value. After an experiment with one rotation rate 52 was finished and 
the layers formed were allowed to diffuse, the linearity of the main stratification was 
checked and a new experiment could be started. 

3. Experimental results 
3.1. Flow regimes 

The diagram of observed flow regimes in the (52,N) parameter space is shown in 
figure 1. Here, we briefly describe the main regimes and transitions between them 
with more quantitative details being given later. In the determination of the neutral 
stability curve the rotation rate 52 was increased by small increments until the critical 
value of 52JN) for the onset of instability was reached. All the other flow states 
and bounds shown in figure 1 for 52 > O,(N)  were obtained by starting with the 
fluid at rest and by setting 52 to the desired supercritical value. For 52 < Q ( N )  the 
flow has only an azimuthal component of velocity (circular Couette flow) with no 
changes in the density field along the vertical axis (regime A, figure 1). This steady 
flow arises shortly after (about 10 min) the start of rotation of the inner cylinder. For 
52 Q , ( N )  on the other hand, the shadowgraph images indicated vertical variations 
in density with the appearance of easily identifiable layers of nearly equal height. By 
this means it was possible to determine 52, as a function of N .  Note that because 
of the gradient in kinematic viscosity v, caused by the salinity gradient, instability at 
large N was always first observed near the top of the cylinder where v is less. The 
critical value of 52 was always determined from onset observed in the central part. 
In the neutral case of N = 0 the critical value of 52 (needed for comparison with the 
results of other studies and to test the theoretical value) was determined from the 
onset of the motion of particles suspended in the fluid. For the present experimental 
conditions 52,(0) N 0.21 s-', giving a Reynolds number Re,(O) = O,a(b - a)/v 2: 90. 
This is in agreement with the expected value of 0.208 s-l (Di Prima & Swinney 1981). 
For N = 0 the instability of circular Couette flow gives rise to axisymmetric Taylor 
vortices of vertical size equal to the width of the gap. 

For stratified Couette flow when N is large enough ( N  > 0.4) and 52 just above 
Q,(N), the first layers visible on the shadowgraph are of height h approximately equal 
to one half of the gap width giving nl = h/ (b  - a )  = $ (nl is the non-dimensional 
layer height or layer height factor). These layers with nl = 4 are observed in the 
stratification-dominated flow regime, called the S-regime. With increasing 52, the usual 
Taylor vortices are also appearing. Steady Taylor vortices indicated by n1 = 1 are 
observed for values of 52 and N lying in region T of figure 1. Between regions S and 
T there exists a transition region ST in which both regimes with nl = 1/2 and nl = 1 
are observed. When we move to larger 52 (for the same N )  the Taylor vortices become 
more and more unsteady and vortices begin to interact in pairs. As a result, instead of 
wavy vortices, observed in homogeneous fluid for large 52 (see Andereck et a/. 1986 and 
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FIGURE 1. Experimentally determined instability and flow regimes for stratified circular Couette 
flow ( E  = 0.275): x, (A-regime) stable azimuthal flow; A, (S) stratification-dominated flow with 
n/ = 1/2; 0, ( S T )  transition between n/ = 1/2 and nl = 1, both exist simultaneously; *, (7') Taylor 
vortices nl = 1; 0, ( C T )  compacted Taylor vortices with n1 = 2; 0, ( S T T )  turbulent motion with 
nl = 2 and observable layers after stop; V, ( T T )  turbulent mixing without layers after stop; /, 
weak vortices with local mixing and partial interfaces, n = 1. For N = 0: A, Taylor vortices; W, 
wavy Taylor vortices. The lines drawn in the figure indicate the approximate boundaries between 
the different regimes. 

square black symbols in figure l), layers of y11 = 2 arise with two closely spaced Taylor 
vortices inside; this is the region C T  in figure 1 with C T  standing for Taylor vortices 
compacted in pairs . Shadowgraph images of the different layers corresponding to 
regimes S, ST, T and C T  are shown in figure 2 for N = 1.2 s-l. From figure 1 one 
can see that onset of instability and the boundaries between the main regimes are 
characterized by a Froude number Q / N  rather than by Reynolds number. 

By further increasing Q, more complicated turbulent interactions between the 
vortices may be observed (region S T T  in figure If. For small N the regime of 
transition to strong turbulent mixing also exists (regime T T ) .  The difference between 
regimes ST T and T T is that in the stratification-affected turbulent regime (ST T)  
layers are visible after stopping the rotation, whereas this is not the case in the 
T T-regime. It should also be remarked that for all regular regimes the layer structure 
formed is conserved for a long time after stopping the rotation of the cylinder (for 
example in regime T layers remained visible up to half an hour). 
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FIGURE 2. Shadowgraph visualizations of the change in layer height as a function of angular velocity 
52 of the inner cylinder, N = 1.2 SKI. ( a )  SZ = 0.6 s-',h N (b  - a)/2 (S-regime); (b)  52 = 0.9 s-', 
transition from h N ( b  - a)/2 to h N ( b  - a), (ST-regime); (c )  52 = 1.2 s-',h N (b  - a) (T-regime); 
( d )  52 = 2.4 s-l, h N 2(b - a )  (CT-regime). 

3.2. Onset of instability 
Usually, instability of stratified, circular Couette flow is manifest by the appearance 
of (regular) density layers on the shadowgraph images. In the range Q / N  < 0.5 
the height h of these layers strongly depends on the buoyancy frequency N or more 
precisely on the Froude number Q / N .  The value of h varied between 5.5 mm and 
8.5 mm (for a gap width d = b - a = 11 mm). From figure 3 it is seen that the 
dependency of the layer height on Froude number may be expressed by the empirical 
formula 

(3.1) 
Q 
N nl = C1-, C1 m 1.38 

indicated by the solid line in figure 3. 
The vortices responsible for the layer formation of height h have a vertical wave- 

length 1 = 2h giving a wavelength factor defined as n = 1/2d equal to nl. At onset 
of instability the vortices are counter-rotating in pairs and the vortex structure is 
asymmetric. To prove the asymmetry we introduced kalliroscope flakes in the fluid 
and used a light sheet (about 1 cm thick) parallel to the axis of rotation. The im- 
ages obtained for flow regime S (Q = 0.55 s-l, N = 1.1 s-l) are shown in figure 4. 
These images indicate a periodic change (the picture of the flow pattern corresponds 
to section 'B-B' in the top view of the gap between the cylinders shown in figure 
5). The horizontal line in figure 4 is at a fixed position with respect to the outer 
cylinder or the non-rotating coordinate system and it is seen that the positions of 
the white maxima in figures 4(a) and 4(c) are opposite. Figures 4(b) and 4(d) show 
the intermediate states. Figure 4 indicates an oscillatory behaviour but observations 
in one section are no proof of non-axisymmetry. We also made simultaneous visu- 
alizations in a diametrically opposite section which demonstrated an asymmetry. It 
was, however, not possible to decide whether the asymmetry is of mode m = 1 or 2. 
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QIN 
FIGURE 3. Dependence of layer thickness on Q / N  in the S-regime for Q / N  < 0.5. 

The solid line corresponds to nl = 1.38 O / N .  

Non-axisymmetric motions at onset of instability of the azimuthal flow can be 
explained by considering that when stratification is important the vortices are smaller 
than the gap width and can, therefore, move in the horizontal plane. Since adjacent 
vortices are counter-rotating, vortex pairs at one position tend to move away from 
the inner cylinder and at another position toward it. Such a row of vortices is likely 
not to be stable and may give rise to oscillations and to a non-axisymmetric vortex 
configuration (a stable axisymmetric state would require vortices which are elongated 
in the horizontal direction to fill the gap). As a result we can have wavy motions in 
the azimuthal direction with wavenumber m. In our particular case m may be either 
1 or 2 as indicated in figure 5. 

The time it takes from the start of cylinder rotation until layers become visible 
depends on how close is to the critical rotation rate. Very close to critical conditions 
(a = 1.1 a,) a layered density structure becomes visible after about 20 rotation 
periods. In these conditions the layers are, however, not very steady (interfaces 
appear and disappear) probably because there is very little mixing. For conditions 
shown in figure 2(a), corresponding to about 1.4 a,, there is more intensive mixing 
and very stable layers are established in about 30 rotation periods. On shadowgraph 
images such as shown in figure 2(a), the density interfaces (dark lines) remain clearly 
at a fixed position. The corresponding vortex structures in the layers between the 
interfaces are shown for the S-regime schematically in figure 5,  consistent with the 
images of figure 4(a-d). The vortex structure in this regime visualized in a diametrical 
section 'A-A', by kalliroscopic particles, is shown in figure 6(a) and by aluminium 
particles in figure 7(a). In figure 7(a)  the apparent wavy axial flow reflects the flow 
induced by the vortices. 

The Froude number Fr = Q / N  is a measure of the relative importance of cen- 
trifugal to buoyancy forces. For the case when Fr >> 1 the centrifugal force 
dominates the motion and the influence of stratification is a small additional ef- 
fect. This is reflected in the flow in regimes T T  and S T T  where the influence 
of stratification is negligible. The opposite is the case in regime S when the 
Froude number is less then 1. In this case stratification controls the size of the 
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FIGURE 4. Kalliroscope particle visualizations for periodic S-regime, N = 1.1 s-',Q = 0.55 s-' 
(Q = 1.3 Q,): (a) t = 0, ( b )  t = 6 S, ( c )  t = 12 S, (d) t = 19 S. 

I View 

FIGURE 5.  Schematic top view and sections of the gap between the cylinders. (i) Top view with light 
sheet orientations B-B and A-A; (ii) lateral cross-section views of the toroidal non-axisymmetric 
vortices in the gap for the S-regime: m = 1 (upper part) and m = 2 (lower part). For view (ii) the 
times are: (a) t = 0 ;  ( b )  t = T1/4; (c) t = T1/2; (d) t = 3T1/4, where TI  is the period of oscillation. 
In the case shown in figure 4, TI = 38 s. 

vortex structure. For some Froude numbers onset of instability occurs via weak 
vortex elements of height h w d/2 which cause only weak, local mixing over a 
height h w d. The interfaces visible on the shadowgraphs span only a fraction 
of the circumference. The whole pattern rotates with constant velocity. The ex- 
istence of these vortices, marked by inclined dashes (/) on figure 1, may be a 
result of resonant internal wave-vortex interactions; all of these points are near 
the points of intersection of the stability curve ( a )  and lines Fr = 1,1/2 and 
1/3. 
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FIGURE 6. Kalliroscope particle visualizations (short time exposure images) for different regimes 
( N  = 0.92 s-'): (a) S-regime with 52 = 0.43 SKI; ( b )  T-regime with 52 = 0.92 s-I;  (c )  CT-regime 
with 52 = 1.82 s-l. 

3.3. The T-regime (nl = 1) 
When the Froude number is near unity or larger, the centrifugal effects dominate 
the instability mode and Taylor vortices appear. These vortices are toroidal and are 
of equal vertical and horizontal size and are equal to the gap between the cylinders. 
The corresponding vertical wavelength is A = 2d giving n = 1. Taylor vortices exist 
in the SZ, N parameter space indicated by T in figure 1 and the corresponding layer 
height factor is nl = 1 (figure 2c). The time required to reach a steady state is about 
30 rotation periods after starting the inner cylinder rotation. Although at some fluid 
depths vortices are formed in less than 5 rotation periods, a steady regular system of 
vortices over nearly the whole fluid depth was reaches only after some interaction. 

Examples of Taylor vortices visualized by kalliroscopic particles and aluminium 
powder are presented respectively in figures 6(b), 7(b), showing fairly regular, well- 
developed vortices. Neighbouring vortices have opposite rotation as is the case for 
the usual Taylor vortices. 

3.4. Compacted vortices, CT-regime (nl = 2) 
The main difference between the regimes with nl = 1 and nl = 2 is that the interfaces 
separating layers (dark-bright lines on shadowgraph images) are of approximately 
equal intensity in the T-regime with nl = 1 (figure 2c). In the CT-regime on the other 
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FIGURE 7. Vortex structures in the different regimes (visualization by aluminium particles using long 
time exposure; N = 1.20 s-'): (a) S-regime with s2 = 0.6 s-', ( b )  T-regime with s2 = 1.2 s-', ( c )  
CT-regime with s2 = 2.4 s-'. 

hand the intensity of every second interface is weaker (figure 2 4 .  This effect is even 
better displayed when the rotation of the inner cylinder is stopped and after some 
time only the stronger interfaces separating layers with nl = 2 remain. At later times 
these disappear, also by diffusion. 

In this regime, Taylor vortices are also the main structures, but these interact in 
pairs (are compacted in pairs) and a weaker mode n = 2 is present. The interaction is 
such that the centres of neighbouring vortices sometimes disappear and re-emerged, 
and it is also possible that one of the interacting vortices may even change its sense 
of rotation. In figure 6(c) the interaction in pairs and some presence of mode n = 2 
is indicated by the absence of kalliroscope particles outside the compact vortex pairs 
with mixing inside the pairs. The particle streak pictures (figure 7c) show, in addition 
to the two compacted Taylor vortices, a flow over a height equal to 2d. These 
results further support the interaction between the main mode n = 1 and a mode 
n = 2. 

3.5. Transition and turbulent regimes 

The transition and turbulent regimes are characterized by the absence of steady 
layers. Transition regimes are observed in the region between regimes with different 
q, in particular between nl = 1/2 and nl = 1 and also for large values of SZ. The 
transition regimes between steady states exhibit complex internal wave motions near 
the interfaces. Some examples of these transition regimes are shown in figure 8. 
Figure 8(b) shows the transition regime S T lying between the S-regime with steady 
layers (figure 8a) and the T-regime; internal waves propagate along the interfaces 
shown in figure 8(b). In the nearly turbulent regime, regions with random interfaces 
are adjacent to regions of more stable layers of nl = 2 (figure 8c). Their positions 
change with time also in a random fashion. In the turbulent regime it is thought that 
stratification has only a very weak effect on the dynamics with the internal waves 
taking only a small fraction of the energy. 
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FIGURE 8. Shadowgraph pictures of regular and transition regimes for N = 1.20 SKI. (a) regular 
S-regime with s2 = 0.6 s-l; (b )  transitian between S T and T-regimes, Q = 0 . 9 ~ ~ ’  ; ( c )  transition 
between CT- and STT-regimes, s2 = 2.12 s- l .  

4. Linear stability analysis 

Re = Qa2e/v, and Froude, Fr = Q / N ,  numbers. 
Here we perform a standard linear stability analysis for different values of Reynolds, 

4.1. Governing equations 
In cylindrical coordinates the equations of incompressible stratified flow with uniform 
viscosity are 

div u = 0, 

(4. lc) 

(4. Id) 

dP’ dpo - + w- = 0, 
at dz 

(4. le) 

where (ur, uq, w )  are the components of velocity respectively in directions (r, cp, z ) .  In 
(4.1) the Boussinesq approximation has been used with 

P ( X )  = PO(Z)  + P’. (4.2) 

In order to reduce the complexity, the density diffusion term in the mass conservation 
equation has been neglected. This is justified on physical grounds, because in the 
experiments the Schmidt number is large. 

The steady axisymmetric flow solution of (4.1) is 

(4.3) 
uO,=Ar+-, B o  u r = 0 ,  w 0 =o, 

r 
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b 
a’ 

B=-Ab  2 =fia2- P2 p = -  
a2 1 A = -,Q- = -ap, 

b2 - a2 p2 - 1 p2- 1’ 

and !2 is the angular velocity of the inner cylinder; u;lrEa = ,Qa and the outer cylinder 
is at rest, u;lr=b = 0. 

For linear density stratification, dpo/dz = a = const < 0, the linearized equations 
(4.1) for axisymmetric ( a / a q  = 0) disturbances, periodic in the axial direction 

(4.4) i(ot+kz) (ur, ~ 9 9  w)(r, Z, t )  = (fir, 69, fi)(r)e 

are 

( 4 . 5 ~ )  

A 

2A5, + iwi& = vDE9 (4.5b) 

(4.5c) 
A 1 

r2 ’ 
D = A - -  

1 - _ -  - (N’ - w 2  -icovA) fi, 
Po kw . -  

(4.5d) 

(4.5e) 

where the Brunt-Vaisala frequency N 2  = -(g/po)(dpo/dz) = const, and density 
disturbances were excluded with the help of (4. le). The boundary conditions for the 
system (4.5) for periodic disturbances with axial wavelength i are the following: 

kplr=a,b = 0, firlr=a,b = 0, f i lr=a,b = 0, filz=OJ/2 = 0, (4.6 a-d) 

and from (4.5J) the condition f i l r za ,b  = 0 takes the form 

aa, 
~ = 0 ( r  = a, b). 
dr (4.7) 

Condition (4.6d) gives according to (4.4) k = 2n/ i .  Instead of this expression we 
shall define the wavenumber k by 

. i L  k = -  
nd’ 

where n is the wavelength factor introduced before and l / n  corresponds to the number 
of vortices in a length equal to the gap width (d = b - a). 

Excluding from ( 4 . 5 ~ )  p/po and fi, we obtain the equation (from hereon we drop 
the tilde” ) 

i d  ( :) a r k 2 0  kr ar 
( N 2  - w2 - iwvA)- -rur, 

A .  a 1  
(vD - IO)U, + 2 A + - u,+, = -- 

which takes the following form after using (4.5b) for u, : 

i a  A 

( N 2  - w2 - iwvA)- -r(vD - iw)u,, (4.9) ~ D - i w ) ~ + 4 A  A + -  u ~ = ~ -  
i d  ( :)] k w a r  r ar 
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where 

Denoting 
F = ( v 8  - io)u,, T = --rF, i a  

r ar 
we have several relations : 

a 
r F  = (8 + k2)F, 

d r  r ar ar 
-AT = (8 + k2)DF 

a i a  _ _ -  

With the help of these relations we finally obtain from (4.9) 

~vD-iw)D+i-(D+k’)  N 2  0 1 (vD-ia)uq = 4k2A (4.10) 

with the boundary conditions that follow from (4.6)’ (4.7) and (4.5b): 

a A  
ar 

UqIr=n,b = 0, ( v f i  - im)UqIr=a,b = 0, -(vD - im)UqIr=a,b = 0. (4.11) 
A 

Since (vD - io)u, = 2Aur it is easy to see that for N = 0 this equation transforms to 
the well-known system (see Di Prima & Swinney 1981) for Couette-Taylor instability. 

R = (kr)2, uq = R-’I2G, (4.12) 

Introducing the new variables 

we obtain the following equation for G (see Appendix A): 

X3 ( R- d’)’ G + X 2  ( R- d 2 ) 2  G + X 1  ( R- d 2 )  G = X o G ,  (4.13) 
dR2 dR2 dR2 

( v;’) ( vk2 O O COO 
.CO . N 2 )  

where 

4- 3-+21--1- , 

X I =  (v:’ -+i-  ;) ( 3 - + + - - 1 -  vk2 .o . N 2 )  

3 - 0  = 

O 52 COO’ 

4(p2 - 1)2 
’ 

with the boundary conditions that follow from (4.11) 

4.2. Solutions for  the small-gap problem: bounds for inviscid instability 
It is of interest to consider first the inviscid solutions which give lower bounds and a 
dependence on N .  For v = 0 equation (4.13) becomes 
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The first boundary conditions (4.14) are G = 0 at R = &, R1 (the second conditions 
are valid according to equation (4.15), and the third conditions that correspond to 
w = 0 on the lateral surfaces of the annulus, r = a, b, are not valid for the inviscid 
case v = 0). 

In terms of the new variable 

b2 -r2 R - 4 = -  - p  --, O < 4 < p 2 - l ,  & = ( ~ L z ) ~ =  
a2 Ro 

and in the limit of a small gap 

equation (4.15) reduces to 

(4.18) 

The solution of (4.18) is 

where J1/3 is the Bessel function. From the boundary condition at 4 = 2e it follows 
that 

(4.20) 

For the roots of equation (4.20) we have 

~1 = 2.9026, ~2 = 6.0327. (4.21) 

For completeness we write the solution for uq(r, t) which is 

(4.22) 

From this expression it is clear that the root ql corresponds to one vortex along the 
width of the gap, yl2 to two vortices and so on. 

From (4.19) and (4.20) we obtain 

1 
112 

(1 + ;€ (3yjn/2n)’ 02/Q2) 

and instability for given n with o = --is,Q (s, is real), is possible for 

(4.23) 
1 - sz 

N (1 - i e  (3yjn/2n:)2s~) 
- _  

The bounds corresponding to the right-hand side of (4.23) for n = i , l ,  and 2 
(approximating the experimentally observed cell sizes) are shown in figure 9 by dash- 
dotted lines. So, above these lines axisymmetric disturbances with appropriate n are 
amplified. 
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2.0 

1.5 

IR (s-1) 

1 .o 

0.5 

FIGURE 9. Comparison of theoretical and experimental stability bounds (as in figure 1). The 
theoretical bounds have been calculated for n = 1 ,1 and 2 (numbers indicated next to the lines); 

, linear, inviscid theory and -, linear, monotonic viscous theory; v, experimental bound 
of instability onset; - - - and --- approximate respectively the experimental lower bounds for 
the existence of Taylor vortices and of compacted vortices. 

The amplification rate for given SZ/N is from (4.23) 

112 
& =  (;(G)2-g) 2 2n: 

(4.24) 

and, hence, for inviscid theory the amplification rate (4.24) is larger for disturbances 
with small vertical size. It should be emphasized that in the case of v = 0, for given 
Q / N  and q j  (4.21), all disturbances with wavenumber factor 

(4.25) 

are amplified. As the cell height tends towards zero ( n  + 0) the rotation rate for 
onset of instability would go to zero as well. 

Equation (4.20) has the set of solutions q j  and as was noticed from the above 
solution (4.22), qj  = ql describes one vortex pattern across the gap and for q j  = q2 
we have two vortices across. Since y/2/y/l NN 2 and, hence, q l n  FZ q2n/2, the bounds of 
instability (4.23) and the amplification rates (4.24) for vortex patterns with ( ~ 1 ,  n )  and 
(q2, n/2) are approximately the same. So, inviscid instability behaviour of a system 
with one vortex across and that of a quadruple system (two vortices along one gap 
height and width) is almost identical. 

To finish discussion of inviscid instability theory it is useful to make the following 
remark about solutions of equation (4.15) without the small-gap assumption. It may 
be represented in the form 
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2 [4s22/(p2 - 1)2] - w2 2 4(ka,~d2)~ e =  , 9 - 1 = -  

G = R ~ / ~  ( I ~ ( Q R ~ / ~ )  + C I L ~ ( O R ~ / ~ ) )  , c = const, 

N2 - 0 2  ( p 2  - 1)2(N2 - w2)’ 

where I ,  is the modified Bessel function. From boundary conditions for R = & and 
R = R1 it follows that 

Although this solution is valid for any E ,  some problems arise when E is small because 
for this case 9 becomes imaginary. 

4.3. Viscous monotonic instability and middle-layer approximation 
In terms of the variable 

< = E X ,  O < x < p + 1 = 2 + € ,  (4.26) 

instead of (4.16), equation (4.13) and the boundary conditions (4.14), in the limit of 
E + 0 take the form 

d6 d4 d2 
dx6 dx4 dx2 

K 3 - - - G + K Z ~ G + K 1 ~ G + K o G = O ,  (4.27) 

where 

V n : 2  
2 

K 3 = 6 4 ~ ( & )  , a = - ,  € 2  K o=x(--) > 

K2 = 16k- 

The simplest method to solve the boundary value problem (4.27), (4.28) is to use 
the middle-layer approximation 

x - x o = l .  (4.29) 
It is worthwhile to point out that this approximation also gives good results for the 
inviscid case, v = 0 (see Appendix B). 

For constant x (approximation (4.29)) and 

(4.30) 

where sr is real (and srQ > 0 for instability which is of monotonic type), equation 
(4.27) and the boundary conditions in (4.28) are real. Solutions of (4.27) can be 
obtained in the form 

6 

G = C Ciekix, 
i=l 
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where ki ,  i = 1, ..., 6 are the roots (real or complex) of the equation that follows from 
(4.27). The six boundary conditions (4.28) for x = 0 and x = 2 give the determinant. 
By setting the determinant equal to zero we obtain the eigenvalue problem which 
contains sr, 6, n/n,  Ra2, N2/R2, c as parameters. 

On figure 9 the thin solid lines are the neutral stability curves for wavenumber 
factors n = $, 1,2. In the neutral case N = 0 the disturbances with IZ = 1 are first 
amplified if SZ > 0.18. This value corresponds to the expected critical value (for 
a / b  = O.8,SZc NN 0.2, see Andereck et al. 1986). For N > 0.4 it is seen from figure 9 
that the experimental values for onset of instability and for the bounds of the flow 
regimes with n = 1 and 2 fall between the corresponding theoretical bounds obtained 
from monotonic viscous and inviscid linear stability solutions. 

On figure 10(a) the neutral, viscous stability curves are plotted for n = 1, $, $, 3 ,  i, 
showing the lower bound of viscous monotonic instability indicated by the dash- 
dotted envelope curve. This curve is not a linear function of N and even exhibits a 
minimum slope around N = 1.2. The difference between this bound of instability and 
experiments suggests the existence of an oscillatory or non-axisymmetric instability, 
as discussed in $3.2, which is the first mode to be amplified. 

4.4. Oscillatory-type instability 

It is well known that in the homogeneous case, N = 0, there are no oscillatory 
instabilities of the azimuthal flow if the outer cylinder is at rest. Even for counter- 
rotating cylinders oscillatory instabilities are possible for non-axisymmetric modes 
only (see Demay, Iooss & Laure 1992). Thorpe (1966), using the appropriate results 
of Chandrasekhar (1961), investigated the oscillatory instability (which in Chan- 
drasekhar is called overstability) for nearly co-rotating cylinders and found that, if 
the Prandtl number is larger than 1.43, then the critical Taylor number is less than 
the corresponding value for monotonic instability. 

For N > 0 we consider the possibility of this type of instability in the asymptotic 
limit v + 0, using equation (4.27) up to the first order in v (more precisely, the 
condition of this approximation is 1N2/SZ2s - 2sl >> 3 (n/n)’ v/e2SZa2 for the solution 
obtained for s (4.38)): 

d2G d4G 
dx2 dx4 

dG+B-+V-=O, 

where 

2 V 
d =  (;) - x 0, d = -  

€2 ’ 

B = 46 [g + s2 + (;)2 (2 + 4s)] , 

V = - 1 6 6 6  SZ a2 (g + 2s) , 

with boundary conditions 

(4.31) 

(4.32) 

which correspond to Uqlr=a,b = 0, u,Ir=a,b = 0 and, hence, only conditions W(r=a,b = 0 
are not fulfilled at this order in v. 
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FIGURE 10. (a) Neutral stability bounds in the (Re,N) plane for vortices with wavelength factors 
n = 1, $, i, $, i, a;  v, experimental bound of instability onset; - - - - - , envelope 
curve for monotonic instability with the most unstable wavenumbers. ( b )  Region (between dotted 
lines) of oscillatory-type instability in the (Re,N) plane for n = i , j  = 1 ;  - - -, linear, inviscid theory 
and -, linear, monotonic viscous theory for n = i ; v, experimental bound of instability onset; 
Re = Qa(b - a) / v .  

Multiplying (4.31) by d2G'/dx2 and integrating by parts from 0 to 2 subject to 
(4.32), we obtain (G' is complex conjugate of G): 

3Y12 - &Il - %'I3 = 0, 

(g + 3Y*)I2 - (W + %'*)I3 = 2 d I 1 ,  

(3Y - &?*)I2 = (W - %'*)I3, 

(4.33) 

(4.34) 
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where 
2 2 2 

II = IG’12dx, 1 2  = 1 IG”I2dx, I3 = 1 IG”’I2dx, 

&?-a?* = ( s - s * ) 4 e  (4.35) 

g - $9. = -(s - s*) 166- 2 - - 
Ra2 ( &) . J 

It follows from (4.34) and (4.35) that 

This equation may be valid if: 

is monotonic; 
(i) s = S* ; in this case there are no oscillations, the growth or decay of disturbances 

(ii) s # s* ; in this case we have 

If here, N = 0, then s + s* < 0 (further we put 52 > 0). This means that oscillations 
(Im(s) # 0) in the non-stratified case could exist only in the steady Taylor-Couette 
regime (Re(s) < 0). So, for instability it is necessary that N > 0. From (4.37) and 
(4.33) in the limit 6 + 0 for unstable solution (s + s* > 0) we obtain (see Appendix 
C) 

(4.38) 

(4.39) 
2 2  6 N 2  (n/n)’+413/12 

112. s, + si = Is12 = - - 
Ra2 Q 2  

The condition 

gives from (4.38),(4.39) the bounds of this type of instability in the form: 
s; + s; 2 s;, (4.40) 

312 
- 6 - N 2  [(:)2+4:] 1 [& xo ( : ) 2  ;-$I . 
52a2 

(4.41) 

Now we shall use for the integrals 11, 1 2  and I2  in (4.41) the middle-layer, inviscid 
approximation (B 2) (see Appendix B) having in mind that (4.41) also was obtained 
for the limit v + 0. So, from (B 2),(B 3) we have “+), 2 $(?), 2 

1 2  

where nj is the non-dimensional radial wavenumber, and the inequality (4.41) gives 

4x26 N 2  
(for xo = 1) 

(4.42) 
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From (4.38) and (4.42) equation (B4) follows indicating that (4.42) extends into the 
region of inviscid instability (v -+ 0), and is close to the bound of this instability (for 
given wavelength factor n). 

According to (4.40), if we have equality in (4.42) then si = 0. In the case of 
strong inequality (4.42) we obtain oscillatory-type instability, si # 0. From (4.38) the 
amplification rate s, of this instability, eiwt = esrnt+is~nr , is equal to 

(4.43) 

By comparison with (B4) it is interesting to note that the amplification rate of this 
oscillatory instability is half the amplification rate of inviscid monotonic instability 
for the same external parameters N ,  S Z ,  f, n, j .  

On figure 10(b) the lower and upper bounds of oscillatory instability given by 
(4.42) are shown for n = f: j .  = 1 and v = 0.01 ern's-'. The experimental values 
(curve a in figure 1) lie within these bounds. Of course, this value of v cannot 
be considered as asymptotically small and the regions on figure 10(b) are some 
approximation of real conditions. From (4.43) it follows that the amplification rates 
(s,) for one vortex pattern in the layer of height half the gap width, n = i , j  = 1 
and for a quadruple vortex pattern in this layer, n = i , j  = 2, are equal (within 
the precision of the middle-layer approximation). But, the frequencies of oscillations 
for this system of vortices si are different. From (4.39) and (4.43) we obtain for 
n = i , j  = 1, sil) = [(6/S22a2)(N2/S2’)(57c2/2s,) - ~ f ] l ’ ~  and for n = b , j  = 2, sil) = 

[(6/S2a2)(N2/SZ2)(207c2/2sr) - $1 I/’ . Hence, for given S2a2 and N / Q ,  s:’) > sil). This 
means that the period of oscillation for a small-scale vortex pattern, T2 = 27c/si2), is 
less than for one vortex across the gap, TI = 27c/sj1) (at least TI > 2T2). 

Asuming that these systems of vortices exist simultaneously, we can imagine the 
following picture of oscillations (figure 11). During some time ( T  < Tl/2) when 
one vortex keeps some definite direction of rotation (figure l l a ) ,  the vortices in the 
quadruple arrangement change their direction of rotation (figure 1 lb). This results in 
a structure with different positions of maximum-vorticity region (figure 1 lc). 

The change of direction of rotation of the one-vortex system with the period TI 
produces some modulation of the oscillations. This would be one of the possible 
mechanisms to explain, in the framework of an axisymmetric velocity field, the 
periodicity which is observed experimentally near onset of instability (figure 4). In 
$3.2 it was mentioned that the instability near onset is actually non-axisymmetric. The 
above quadruple system of vortices may be non-axisymmetrically unstable because of 
the presence of a saddle point between the vortices. In the case of counter-rotating 
homogeneous CouetteTaylor flow non-axisymmetric oscillatory instability is also 
found to occur at lower critical Reynolds number than monotonic instability, but 
the difference between the critical Reynolds numbers is very small (see Demay et al. 
1992). 

5. Discussion and conclusions 
The main result of the experiments is the formation of layers in the stratified fluid 

with their height taking on discrete values instead of changing in a continuous fashion 
with S Z .  For the configuration considered, the smallest layer height is less than the gap 
width between the cylinders and is about half the gap width at small N ,  decreasing 



Stratijied circular Couette $ow 353 

t=O t=O 
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0 

FIGURE 11. Schematic representation of oscillations in the vortex system for (a) n = i , j  = 1 and ( b )  
n = : , j  = 2 (b); (c) is the resulting vortex pattern due to interaction of (a) and ( b )  configurations. 

with increasing N .  The origin for this layer formation is the mixing caused by the 
vortex structures resulting from the most amplified wavelength at different values of 
(SZ, N ) .  Near onset of instability the most amplified mode has a wavelength factor 
of n = 1/2 and the instability is non-axisymmetric. Linear stability theory indicates 
that the most unstable mode is of oscillatory type, possibly non-axisymmetric. At 
larger values of Q modes n = 1 and n = 2 are successively amplified. The azimuthal 
secondary instability observed in homogeneous fluid is suppressed by stratification. 
Internal waves are, however, generated. Their influence on the dynamics of the flow is 
secondary because, generally, the energy contained in these waves is a small fraction 
of the energy in the coherent vortex structures. In the viscous theory internal wave 
motion is one solution which has not been looked for. 

The experiments are conducted with a fluid at large Schmidt number (about lo3) 
and it is, therefore, justified to neglect density diffusion in the mass conservation 
equation. For lower Prandtl number (order 1) the discrete mode selection still 
exists (Orlandi 1994) but stable density layers could, probably, only form if the 
Peclet number is large, Pe  = u h / ~  >> 1, where u is a characteristic velocity of the 
vortices and IC the diffusivity. For Prandtl number less than about 1.43 the instability 
is monotonic (Thorpe 1966) but this does not noticeable affect the height of the 
rolls. 

The experiments have been conducted bearing in mind the possible relevance of the 
results to equatorial jet formation. Measurements by Firing (1987) in the meridional 
plane show isovelocities which give the image of flattened cells of aspect ratio (width 
to height) of about 300. The largest aspect ratio in the present experiments is 2 to 3 
only. The question is whether a larger gap and larger Reynolds number would give 
larger aspect ratios. Experiments with a larger gap but similar Reynolds numbers as 
in the present experiments indeed show an increase in aspect ratio (Boubnov, Gledzer 
& Hopfinger 1994). 

The dependence of the aspect ratio on Reynolds number and gap width may be 
deduced from energy arguments. The simplest one is to consider that some part of 
the kinetic energy of a fluid element near the inner cylinder, E - ( ~ s 2 ) ~ / 2 ,  transforms 
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into potential energy 9 - g(p' /po) (h/2)  when it is elevated by some height h resulting 
in a density change p' - Idpo/dzIh. So E > 9 gives 

or 
h R  
- < -. 
d E N  

This differs from inviscid, linear stability theory which shows that 

(kl corresponds to a one-vortex pattern along the gap width, k2 to two vortices). To 
improve the energy arguments, consider a fluid particle which moves near the outer 
trajectory of the vortex of width d and height h (for a toroidal vortex this corresponds 
to some thin circular vortex ring which changes its radius). For Couette flow the 
centrifugal force u i / r  is balanced by the appropriate pressure gradient directed toward 
the inner cylinder. When the particle moves toward the outer cylinder the centrifugal 
force produces work. If the value of the centrifugal force is taken equal to aR2 
(near the inner cylinder), then at the distance d the corresponding work is equal 
to W = dull2.  The work done during elevation of a fluid element by height h is 
W = glp'/polh = N2h2.  This gives an estimation for the maximum value of h for 
given R/N by setting 

h R  
- < - d E ' I ~ N '  

dun2  2 N2h2, ( 5 . 3 )  

This differs only slightly from ( 5 . 2 )  for i = 1 .  
It is now possible to include in the previous considerations the influence of viscous 

forces. According to Navier-Stokes equations the viscous force is vn2 ( 2 / d 2  + 1 /h2)  aS2 
for a one-vortex pattern across the gap. The corresponding additional work is 
vn2 ( 2 / d 2  + 1 /h2)  aR ( d 2 / 2  + h2) giving the relation 

daR2 - N2h2 + vn2 ($ + i) an ( d 2 / 2  + h2) lI2 ,  (5.4) 

which describes the balance between centrifugal, buoyancy and viscous forces. The 
term d 2 / 2  in ( 5 . 4 )  was taken to describe the fact that for N = 0 the minimum rotation 
52, is for Taylor vortices with d = h (minimum of the right-hand side of ( 5 . 4 )  with 
N = 0) and is equal to S2, = ( v / u ~ E ~ ) x ~ ~ ( ~ ) ' / ~  - 0.2 for a = 4 cm,e - 0.3. 

With increasing N the minimum of R is realized for values h, < d. For large 
enough N the following approximations are obtained from ( 5 . 4 )  : 

From ( 5 . 5 )  for a = 4 cm,c = 0.275 we obtain for N = 0.5, hm/d = 0.7 and for 
N = 1 ,  h,/d = 0.5 in accordance with the experimental results of $3.2. The values of 
the minimum layer height h, and minimum angular velocity Rm at onset of instability 
are related by 
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FIGURE 12. Relation between Re and layer height factor nf = h / d  for (1) Fr = co; (2) Fr = 1; (3) 
Fr = 10-l; (4) Fr = ( 5 )  Fr = calculated from equation (5.7). 

For E = 0.275 we obtain 1/(2e)'l2 = 1.35 which is very close to the experimental value 
given by (3.1). 

From equation (5.4) follows the relation between Reynolds number Re = SZad/v 
and layer height factor nl = h /d  for given Froude number F r :  

(5.7) 

In figure 12 this relation is shown for different Froude numbers demonstrating a 
decrease in nl with increasing Reynolds number and decreasing Froude number Fr. 
In the equatorial ocean Fr - lop3 , nl - , which gives R e  - lo7 when c - 1. The 
velocity of the undercurrent (below the main thermocline) is typically U N 0.5 m s-l 

and the halfwidth d - 100 km. This gives an eddy viscosity vt - m2 s-l, which 
is an upper bound of the (vertical) eddy viscosity usually taken in numerical models 
of tropical oceans (Pacanowski & Philander 1981). In these models a turbulent 
Prandtl number, P r ,  = v t / q ,  of about 10 is used which can still be considered large. 
As discussed above, even a turbulent Prandtl number of 1 would not make the 
experimental results and the theoretical analysis inapplicable because the height of 
the rolls is hardly altered when P r  + 1 (Orlandi 1994) and nearly constant density 
layers of height h could still form, due to mixing by the rolls, if d / U  << h 2 / ~ , .  
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Appendix A 

is valid: 
We intend to represent (4.10), (4.11) in variables (4.12). For 8 the following relation 
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Instead of (4.10) we obtain: 
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((vk’a - iw)k2h + i-k2(a N 2  + 1) (vk2a - iw)u, = 4k2A 
0 

With the help of relations 

d2 G (a + l ) ~ ,  = 4R’/2- 
dR2 

the following representation of equation (A 1)  

osz 

vk2 A 

sz P = - ( d + l ) -  

is transformed to 

7 c =  [- 
which gives (4.13). 

Appendix B 
We have from (4.27) or (4.18) 

2 Q2 x 
- G = O .  

d2 
SG+ (:) N 2  - o2 4e 

If we use the approximation (4.29) in the second term in (B l), then the solution is 

sz 

The boundary condition GIx.2 = 0 gives 

and instability o2 = -$a2 for the inviscid middle-layer approximation exists, with 
corresponding amplification rate s,, if 
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Here, j = 1 describes one vortex across the gap, j = 2 two vortices and so on. For 
j = 1 the factor k: 1.41 in (B3), (B4) replaces the value 3q1/27[: k: 1.38 in (4.24), 
(4.23). 

Appendix C 
From (4.37) we have 

Equation (4.33) has the form 

2x0 (;)'I1 = 4E 2- + s2 + (s*)2 + - -(s + S*)  4 + - [ :: (:I2 :a2 ( &)I I 2  

( $112)  13, (' 2, 
6 + 16~-(~ + s*) 

Ra2 
2 + - 

Now let us consider the limit 6 + 0. Equation (C 1) becomes 

(C 3) 
6 1 N2 1 

1sI2 = Q =  QS22' + 413/12 
Using s2 + ( s * ) ~  = (s + s * ) ~  - 21sI2 and (C 3) we have instead of (C 2) 

7 t 2  

n 

2 
2x0 (:) II k: 46 + (s + s ' ) ~  + (-) Q(s + s ' ) ~  1 2  + 16~Q(s + S')~I~ 

= 8612 (5 N2 + (s + s*)2) . 

From this, for the unstable solution (s + s* > 0), equation (4.38) is obtained, and also 
(C 3) gives equation (4.39). 
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